persongroup

ABOUT
David McDowell
Carter N. Paden Jr. Distinguished Chair in Metals Processing
Regents' Professor, Executive Director, Georgia Tech Institute for Materials
404.894.5128
404-894-0186
RBI 415

Regents’ Professor and Carter N. Paden, Jr. Distinguished Chair in Metals Processing, Dave McDowell joined Georgia Tech in 1983 and holds a dual appointment in the GWW School of Mechanical Engineering and the School of Materials Science and Engineering. He served as Director of the Mechanical Properties Research Laboratory from 1992-2012. In 2012 he was named Founding Director of the Institute for Materials (IMat), one of Georgia Tech’s Interdisciplinary Research Institutes charged with fostering an innovation ecosystem for research and education.  He has served as Executive Director of IMat since 2013.

Dr. McDowell's research focuses on nonlinear constitutive models for engineering materials, including cellular metallic materials, nonlinear and time dependent fracture mechanics, finite strain inelasticity and defect field mechanics, distributed damage evolution, constitutive relations and microstructure-sensitive computational approaches to deformation and damage of heterogeneous alloys, combined computational and experimental strategies for modeling high cycle fatigue in advanced engineering alloys, atomistic simulations of dislocation nucleation and mediation at grain boundaries, multiscale computational mechanics of materials ranging from atomistics to continuum, and systems-based computational materials design.

A Fellow of SES, ASM International, ASME and AAM, McDowell is the recipient of the 1997 ASME Materials Division Nadai Award for career achievement and the 2008 Khan International Medal for lifelong contributions to the field of metal plasticity. McDowell currently serves on the editorial boards of several journals, and is co-Editor of the International Journal of Fatigue. 

Dr. McDowell's current curriculum vitae.

PUBLICATIONS & PATENTS
Selected publications: 
  1. McDowell, D.L., “Simulation-Assisted Materials Design for the Concurrent Design of Materials and Products,” JOM, Vol. 59, No. 9, 2007, pp. 21-25.
  2. McDowell, D.L. and Olson, G.B., “Concurrent Design of Hierarchical Materials and Structures,” Scientific Modeling and Simulation (CMNS), Vol. 15, No. 1, 2008, pp. 207-240.
  3. McDowell, D.L., “Viscoplasticity of Heterogeneous Metallic Materials,” Materials Science and Engineering R: Reports, Vol. 62, Issue 3, 2008, pp. 67-123.
  4. Derlet, P.M., Gumbsch, P., Hoagland, R., Li, J., McDowell, D.L., Van Swygenhoven, H., and Wang, J., “Atomistic simulations of dislocations in confined volumes,” MRS Bulletin, Vol. 34, No. 3, 2009, pp. 184-189.
  5. Przybyla, C., Prasannavenkatesan, R., Salajegheh, N. and McDowell, D.L., “Microstructure-Sensitive Modeling of High Cycle Fatigue,” International Journal of Fatigue, Special issue on Fatigue of Materials: Competing Failure Modes and Variability in Fatigue Life, ed. K S. Ravi Chandran et al. Vol. 32, No. 3, 2010, pp. 512-525.   
  6. Przybyla, C.P. and McDowell, D.L., “Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Ni-Base Superalloy IN100,” International Journal of Plasticity, Vol. 26, No. 3, 2010, pp. 372-394.  
  7. Spearot, D.E. and McDowell, D.L., “Atomistic Modeling of Grain Boundaries and Dislocation Processes in Metallic Polycrystalline Materials,” ASME Journal of Engineering Materials and Technology, Vol. 131, No. 4, 2009, pp. 0412041-0412049.
  8. McDowell, D.L. and Dunne, F.P.E., “Microstructure-Sensitive Computational Modeling of Fatigue Crack Formation,” International Journal of Fatigue, Special Issue on Emerging Frontiers in Fatigue, Vol. 32, No. 9, 2010, pp. 1521-1542.
  9. McDowell, D.L., “A Perspective on Trends in Multiscale Plasticity,” International Journal of Plasticity, special issue in honor of David L. McDowell, Vol. 26, No. 9, 2010, pp. 1280-1309.
  10. Austin, R.A. and McDowell, D.L., “A Viscoplastic Constitutive Model for Polycrystalline fcc Metals at Very High Rates of Deformation,” International Journal of Plasticity, Vol. 27, No. 1, 2011, pp. 1-24.
  11. Xiong, L., Tucker, G.J., McDowell, D.L., and Chen, Y., “Coarse-Grained Atomistic Simulation of Dislocations,” Journal of the Mechanics and Physics of Solids, Vol. 59, 2011, pp. 160-177.
  12. McDowell, D.L., Ghosh, S., and Kalidindi, S.R., “Representation and Computational Structure-Property Relations of Random Media,” JOM, Vol. 63, No. 3, 2011, pp. 45-51.
  13. Przybyla, C.P. and McDowell, D.L., “Microstructure-Sensitive Extreme Value Probabilities of High Cycle Fatigue for Surface vs. Subsurface Crack Formation in Duplex Ti-6Al-4V,” Acta Materialia, Vol. 60, No. 1, 2012, pp. 293-305.
  14. Xiong, L., Deng, Q., Tucker, G.J., McDowell, D.L., and Chen, Y., “A Concurrent Scheme for Passing Dislocations from Atomistic to Continuum Regions,” Acta Materialia, Vol. 60, No. 3, 2012, pp. 899-913.
  15. Xiong, L., Deng, Q., Tucker, G.J., McDowell, D.L., and Chen, Y., “Coarse-Grained Atomistic Simulations of Dislocations in Al, Ni and Cu Crystals,” International Journal of Plasticity, Vol. 38, 2012, pp. 86-101.
  16. Luscher, D.J., Bronkhorst, C., and McDowell, D.L., “Effects of Local and Nonlocal Substructure Spin on Localization in Tantalum Tophat Specimen,” Technische Mechanik, 32, 2-5, 2012, pp. 393-407.
  17. Castelluccio, G.M. and McDowell, D.L., “Assessment of Small Fatigue Crack Growth Driving Forces in Single Crystals with and without Slip Bands, Int. Journal of Fracture, Vol. 176, No. 1, 2012, pp. 49-64.
  18. Panchal, J.H., Kalidindi, S.R., and McDowell, D.L., “Key Computational Modeling Issues in ICME,” Computer-Aided Design, Vol. 45, No. 1, 2013, pp. 4–25.
  19. McDowell, D.L., “Incentivize Sharing,” a comment on Sharing Data in Materials Science, Nature, Vol. 503, No. 7477, Nov. 2013, pp. 463-464. http://www.nature.com/news/technology-sharing-data-in-materials-science-1.14224
  20. Castlluccio, G.M., and McDowell, D.L., “A Mesoscale Approach for Growth of 3D Microstructurally Small Fatigue Cracks in Polycrystals,” Int. J. Damage Mechanics, Vol. 23, No. 6, 2014, pp. 791-818.
  21. Narayanan, S., McDowell, D.L., and Zhu, T., “Crystal Plasticity Model for BCC Iron Atomistically Informed by Kinetics of Correlated Kinkpair Nucleation on Screw Dislocations,” Journal of the Mechanics and Physics of Solids, Vol. 65, 2014, pp. 54-68.
  22. Mayeur, J.R. and McDowell, D.L., “A Comparison of Gurtin-Type and Micropolar Single Crystal Plasticity with Generalized Stresses,” International Journal of Plasticity, Vol. 57, 2014, pp. 29-51.
  23. Castelluccio, G.M., Musinski, W.D. and McDowell, D.L., “Recent Developments in Assessing Microstructure-Sensitive Early Stage Fatigue of Polycrystals,” Current Opinion in Solid State and Materials Science, Vol. 18, No. 4, 2014, pp. 180-187.
  24. Castelluccio, G.M., and McDowell, D.L., "Mesoscale Modeling of Microstructurally Small Fatigue Cracks in Metallic Polycrystals," Mat. Sci. Eng. A, Vol. 598, No. 26, 2014, pp. 34-55.
  25. Patra, A., Zhu, T. and McDowell, D.L., “Constitutive equations for modeling non-Schmid effects in single crystal bcc-Fe at low and ambient temperatures,” Int. J. Plasticity, Vol. 59, 2014, pp. 1-14.
  26. Lloyd, J.T., Clayton, J.D., Austin, R.A., and McDowell, D.L., “Plane wave simulation of elastic-viscoplastic single crystals,” Journal of the Mechanics and Physics of Solids, Vol. 69, 2014, pp. 14-32.
  27. Lloyd, J.T., Clayton, J.D., Becker, R.C., and McDowell, D.L., “Simulation of Shock Wave Propagation in Single Crystal and Polycrystalline Aluminum,” Int. J. Plasticity, Vol. 60, 2014, pp. 118-144.
  28. McDowell, D.L. and Liu, Z.-K., “The Penn State-Georgia Tech CCMD: Ushering in the ICME Era,” Integrating Materials and Manufacturing Innovation, TMS, 3(1), 2014, p. 28.
  29. Patra, A., Priddy, M., and McDowell, D.L., “Modeling the effects of microstructure on the tensile properties and micro-fracture behavior of Mo-Si-B alloys at elevated temperatures,” Intermetallics, Vol. 64, 2015, pp. 6-17.
  30. Xu, S., Che, R., Xiong, L., Chen, Y. and McDowell, D.L., “A Quasistatic Implementation of the Concurrent Atomistic-Continuum Method for FCC Crystals, International Journal of Plasticity, Vol. 72, 2015, pp. 91-126.
  31. Castelluccio, G.M. and McDowell, D.L., “Microstructure and Mesh Sensitivities of Mesoscale Surrogate Driving Force Measures for Transgranular Fatigue Cracks in Polycrystals,” Materials Science and Engineering A, Vol. 639, 2015, pp. 626-639.
  32. Mayeur, J.R. and McDowell, D.L., “Micropolar Crystal Plasticity Simulations of Particle Strengthening,” Modeling and Simulation in Materials Science and Engineering, Vol. 23, No. 6, 2015, p. 065007.
  33. Pineau, A., Antolovich, S.D., McDowell, D.L., and Busso, E.P., “Failure of Metals II:  Fatigue,” Acta Materialia, Vol. 109, No. 1, 2016, pp. 484–507.
  34. Tiwari, S. and McDowell, D.L., “Shear Deformation Behavior of Cu Nanocrystals Under Imposed Hydrostatic Stress,” ASME J. Applied Mechanics, 82(9), 2015, 091011-091011-11.
  35. Lloyd, J.T., Clayton, J.D., Austin, R.A., and McDowell, D.L., “Shock Compression Modeling of Metallic Single Crystals: Comparison of Finite Difference, Steady Wave, and Analytical Solutions,” Advanced Modeling and Simulation in Engineering Sciences, Vol.2, No. 14, 2015, doi:10.1186/s40323-015-0036-6.
  36. Tschopp, M.A., Coleman, S.P., and McDowell, D.L., “Symmetric and Asymmetric Tilt Grain Boundary Structure and Energy in Cu and Al (and transferability to other FCC metals),” Integrating Materials and Manufacturing Innovation, 2015, 4:11, DOI 10.1186/s40192-015-0040-1.
  37. Xiong, L., Rigelesaiyin, J., Chen, X., Xu, S., McDowell, D.L., and Chen, Y., “Coarse-Grained Elastodynamics of Fast Moving Dislocations,” Acta Materialia, Vol. 104, 2016, pp. 143-155.
  38. Xu, S., Xiong, L., Chen, Y. and McDowell, D.L., “Sequential slip transfer of mixed character dislocations across Σ3 coherent twin boundary in FCC metals: A concurrent atomistic-continuum study,” npj Computational Materials 2, 15016, 2016, oi:10.1038/npjcompumats.2015.16.
  39. Patra, A. and McDowell, D.L., “Crystal Plasticity Investigation of the Microstructural Factors Influencing Dislocation Channeling in a Model Irradiated BCC Material,” Acta Materialia, Vol. 100, 2016, pp. 364-376.
  40. McDowell, D.L. and Kalidindi, S.R., “The Materials Innovation Ecosystem: A Key Enabler for the Materials Genome Initiative,” MRS Bulletin, Vol. 41, 2016, pp. 326-335.
  41. Castelluccio, G.M., Musinski, W.D., and McDowell, D.L., “Computational Micromechanics of Microstructures in the HCF-VHCF Regimes,” International Journal of Fatigue, Vol. 93(2), 2016, pp. 387-396.
  42. Kalidindi, S.R., Medford, A.J., and McDowell, D.L., “Vision for Data and Informatics in the Future Materials Innovation Ecosystem,” JOM, Vol. 68, No. 8, 2016, pp. 2126-2137.
  43. Xu, S., Xiong, L., Chen, Y., and McDowell, D.L., “Validation of the Concurrent Atomistics-Continuum Method on Screw Dislocation/Stacking Fault Interactions,” Crystals, Vol. 7, No. 5, 2017, p. 120.
  44. Chen, X., Xiong, L., McDowell, D.L., and Chen, Y., “Effects of Phonons on Mobility of Dislocations and Dislocation Arrays,” Scripta Materialia, Vol. 137, 2017, pp. 22-26.
  45. Sobie, C., Capolungo, L., McDowell, D.L., Martinez, E., “Scale Transition using Dislocation Dynamics and the Nudged Elastic Band Method,” Journal of the Mechanics and Physics of Solids, Vol. 105, 2017, pp. 161-178.
  46. Sobie, C., McDowell, D.L., Martinez, E., Capolungo, L., “Thermal Activation of Dislocations in Large Scale Obstacle Bypass,” Journal of the Mechanics and Physics of Solids, Vol. 105, 2017, pp. 150-160.
  47. Castelluccio, G.M and McDowell, D.L., “Mesoscale Cyclic Crystal Plasticity with Dislocation Substructures,” International Journal of Plasticity, Vol. 98, 2017, pp. 1-26.
  48. Huang, S., Chen, D., Song, J., McDowell, D.L., and Zhu, T., "Hydrogen embrittlement of grain boundaries in nickel: An atomistic study", npj Computational Materials 3, 28, 2017.  doi:10.1038/s41524-017-0031-1.
  49. Priddy, M.W., Paulson, N.H., Kalidindi, S.R., and McDowell, D.L., “Strategies for Rapid Parametric Assessment of Microstructure-Sensitive Fatigue for HCP Polycrystals, International Journal of Fatigue, Vol. 104, 2017, pp. 231-242.
  50. Kern, P.C., Priddy, M.W., Ellis, B.D., and McDowell, D.L., “pyDEM: A Generalized Implementation of the Inductive Design Exploration Method,” Materials & Design, Vol. 134, 2017, pp. 293-300.
  51. Chen, X., Li, W., Diaz, A., Li, Y., McDowell, D.L., Chen, Y., “Recent Progress in the Concurrent Atomistic-Continuum (CAC) Method and Its Application in Phonon Transport,” MRS Communications, Vol. 7, No. 4, 2017, pp. 785-797.
  52. Chen, X., Diaz, A., Xiong, L., McDowell, D.L., and Chen, Y., “Passing Waves from Atomistic to Continuum,” Journal of Computational Physics, Vol. 354, 2018, pp. 393-402.
  53. Tallman, A., Swiler, L.P., Wang, Y., and McDowell, D.L., “Reconciled Top-down and Bottom-up Hierarchical Multiscale Calibration of bcc Fe Crystal Plasticity,” International Journal for Computer Methods in Engineering, 15(6), 2017, pp. 1–19.
  54. Li, W., Xiong, L., Yang, S., Zheng, Z., McDowell, D.L., and Chen, Y., “Ballistic-diffusive Phonon Heat Transport across Grain Boundaries,” Acta Materialia, Vol. 136, No. 1, 2017, pp. 355-365.
  55. Xu, S., Rigelesaiyin, J., Xiong, L., Chen, Y., and McDowell, D.L., “Generalized Continua Concepts in Coarse-Graining Atomistic Simulations,” Springer Special Volume in Memoriam to Prof. G. Maugin, 2018, pp. 237-260. Springer International Publishing AG, H. Altenbach et al. (eds.), Generalized Models and Non-classical Approaches in Complex Materials 2, Advanced Structured Materials 90, https://doi.org/10.1007/978-3-319-77504-3_12.
  56. Xu, S., Payne, T.G., Chen, H., Liu, Y., Xiong, L. Chen, Y. and McDowell, D.L., “pyCAC: The concurrent atomistic continuum simulator with a Python scripting interface,” MRS Journal of Materials Research, focused issue on Advanced Atomistic Algorithms in Materials Science, 1-15, doi:10.1557/jmr.2018.8.
  57. Diaz, A., McDowell, D.L., and Chen, Y., “The Limitations and Successes of Concurrent Dynamic Multiscale Modeling Methods at the Mesoscale,” Chapter 3, Springer Special Volume in Memoriam to Prof. G. Maugin, 2018, pp. 55-77, Springer International Publishing AG, H. Altenbach et al. (eds.), Generalized Models and Non-classical Approaches in Complex Materials 2, Advanced Structured Materials 90, https://doi.org/10.1007/978-3-319-77504-3_3.
  58. Mayeur, J.R., McDowell, D.L., and Forest, S., “Micropolar Crystal Plasticity,” Handbook of Nonlocal Continuum Mechanics for Materials and Structures, edited by George Z. Voyiadjis, Springer International Publishing AG, 2018, doi:10.1007/978-3-319-22977-5_48-1.
  59. Forest, S., Mayeur, J.R., and McDowell, D.L., “Micromorphic Crystal Plasticity,” Handbook of Nonlocal Continuum Mechanics for Materials and Structures, edited by George Z. Voyiadjis, Springer, accepted January 2018.
  60. Paulson, N.H., Priddy, M.W., McDowell, D.L., and Kalidindi, S.R., “Data-Driven Reduced-Order Models for Ranking the High Cycle Fatigue Performance of Polycrystalline Microstructures,” Materials and Design, Vol. 154, No. 15, 2018, pp. 170-183.