MSE 6412 – Structure of Materials School of Materials Science and Engineering Georgia Institute of Technology # Fall Semester 2019 ### **Course Objective** To provide students with a fundamental understanding of structural features of materials, including point and space groups, representative crystal structures, quasi-crystals, amorphous and rubbery states, liquid crystals, colloids, solutions, and effect of symmetry on materials properties Lecture 4:30 - 5:45pm Tu Th, Instr Center 111 InstructorsMeilin LiuNatalie StingelinOfficeLove 258MoSE 2278Phone894-6114(404) 894-2143 E-mail | meilin.liu@mse.gatech..edu natalie.stingelin@gatech.edug Office Hour | Tu Th 5:45-6:45pm or by appointment, also call or e-mail Teaching Assistant and Office Hour **Hansol Lee:** 3-4pm on Tuesday/Thursday **Zheyu Luo:** 11-12 on Wednesday/Friday, **Location:** 4th floor lobby in MoSE Homework Problems will be assigned periodically and solutions will be posted later. Homework may be collected but will not be graded. #### Exam/grading #### 4 Exams, 25% each Exam 1 – Macromolecular matter: basic structure Exam 2 – Semicrystalline vs. amorphous polymers Exam 3 – Structure & symmetry of materials Exam 4 – Structure-property relationships ### **Grading Basis** Scale >90% A guaranteed >80% B guaranteed >70% C guaranteed >60% D guaranteed #### **Learning Objectives:** Upon completion of this course, students will be able to: - 1. Deduce point groups of simple crystal structures and geometric figures. - 2. Understand space group notations and all symmetry elements associated with each space group. - 3. Understand relationships between mass, shape and size of polymers and other nanostructures. - 4. Become familiar with structural features of all classes of materials, including hard and soft materials. - 5. Understand the inherent correlation between structure and properties of materials. #### **Academic Integrity** Students are reminded of the obligations and expectations associated with the Georgia Tech Academic Honor Code and Student Code of Conduct, available online at www.honor.gatech.edu. Academic dishonesty will not be tolerated, including cheating, lying about course matters, plagiarism, or helping others commit a violation of the Honor Code. # Learning Accommodations: For students with documented disabilities, we will make classroom accommodations in accordance with the ADAPTS office (http://www.adapts.gatech.edu). However, this must be arranged in advance. #### **Electronic Devices** Silence cell phones during class. Surfing OK during class, not during exams. Calculator (not one on an internet-connected device!) is OK during exam, but you should not need it much. #### References - 1. Lecture notes to be posted on T-Square, Canvas or Dropbox - 2. **Structure of Materials:** An Introduction to Crystallography, Diffraction and Symmetry, 2nd Edition, M. De Graef and M. E. McHenry, 2012, Cambridge University Press. - 3. Physical Ceramics, Y. M. Chiang, D. Birnie, and W. D. Kinggery, Wiley, 1997. - 4. Crystallography An Introduction, 3rd ed., Walter Borchardt-Ott, Springer-Verlag, 2012 - 5. **Physical Properties of Crystals:** Their Representation by Tensors and Matrices, 3rd Edition, J.F. Nye, Oxford, 2001. - 6. Soft Matter Physics, Masao Doi, 2015, Oxford. - 7. Polymer Chemistry, 2nd Edition, P.C. Hiemenz and T. P. Lodge, 2007, CRC. - 8. Colloid Science: Principles, Methods and Applications, Terence Cosgrove, 2010, Wiley. - 9. Structured Fluids: Polymers, Colloids, Surfactants, Thomas A. Witten, 2010, Oxford. # MSE 6412: Structure of Materials Topical Outline | Week | Date | Topic | Comment | | |------|-------|--|------------------------------------|--| | 1 | 8/20 | Overview of the course, structural features of materials/materials classes, and their impact on properties | | | | | 8/22 | Polymer solids: review of macromoleculers and their structures | Last day to drop w/o "W" August 23 | | | 2 | 8/27 | How can polymers crystalize? Influence of chemical structure | | | | | 8/29 | Morphology and structure of macromolecular matter: solidification from dilute solutions I | | | | 3 | 9/3 | Morphology and structure of macromolecular matter: solidification from dilute solutions II | | | | | 9/5 | Solidification from concentrated solutions/melt I | | | | 4 | 9/10 | Solidification from concentrated solutions/melt II | | | | | 9/12 | Recap: Polymer structure formation to guide processing | | | | 5 | 9/17 | Exam 1: Polymer structure formation | | | | | 9/19 | Polymer crystal unit cell and crystal modulus // Effect of non-ambient conditions on polymer structure | | | | 6 | 9/24 | Crystallinity and measuring crystallinity in soft matter | | | | | 9/26 | Polymer melting I | | | | 7 | 10/1 | Polymer melting II | | | | | 10/3 | Polymer phase diagrams to establish structure property relation | | | | 8 | 10/8 | Amorphous polymers | | | | | 10/10 | Representative crystal structures (& unique properties) of metals, alloys, intermetallics, superlattices | | | | | | | | | | 9 | 10/15 | Holiday | Fall Recess: Oct. 14/15 | |----|--------------------|--|---| | | 10/17 | Exam 2: Structure/property relations in soft matter | | | 10 | 10/22 | Ceramics/Ionic crystals: AX, AX ₂ , ABX ₃ , AB ₂ X ₄ compounds: e.g., Fluorite, Perovskite | | | | 10/24 | Spinel, Garnet, etc.; Pauling rules; molecular crystals (soft materials) | Last Day to Withdraw (Oct 26
@ 4 pm) | | 11 | 10/29
(→ 10/28) | Transformation of coordinate systems;
Symmetry operations: rotations,
inversion, reflection, translation, etc. | | | | 10/31 | Introduction to groups, crystallographic point groups (2D and 3D) | | | 12 | 11/5 | Magnetic symmetry: time reversal;
Magnetic (color) point groups (color,
charge, & time reversal; Space groups | | | | 11/7
(→11/4) | Non-crystallographic point groups:
Curie (limiting) groups (symmetry of
force fields, physical properties) | | | 13 | 11/12 | Exam 1: Structure & symmetry of materials | | | | 11/14 | Introduction to anisotropy and tensors | | | 14 | 11/19 | Effect of crystal symmetry on properties of materials: Neumann's principles | | | | 11/21 | Formulation of physical interactions | | | 15 | 11/26 | Number of independent components of tensor properties in different crystals | | | | 11/28 | Holiday | Thanksgiving Holiday | | 16 | 12/3
(→11/25) | Ferro-electricity, Ferrimagnetism, and other physical interactions | Final Class | | | 12/5 | No Class | Reading Period | | | 12/9 | Time to be announced Exam 4: Structure-property relationships | |