Zhiqun Lin is currently Professor of Materials Science and Engineering at the Georgia Institute of Technology. His research focuses on nanostructured functional materials (NanoFM). An extensive list of materials currently under investigation in his group includes polymer-based nanocomposites, block copolymers, polymer blends, conjugated polymers, quantum dots (rods, tetrapods, wires), magnetic nanocrystals, metallic nanocrystals, semiconductor metal oxide nanocrystals, ferroelectric nanocrystals, multiferroic nanocrystals, upconversion nanocrystals, thermoelectric nancrystals, core/shell nanoparticles (nanorods), hollow nanocrystals, Janus nanocrystals, nanopores, nanotubes, hierarchically structured and assembled materials, and semiconductor organic-inorganic nanohybrids.

The goal of his research is to understand the fundamentals of these nanostructured materials. His group intends to create these nanostructures in a precisely controllable manner and to exploit the structure-property relationships in the development of multifunctional materials for potential use in energy conversion (e.g., solar cells, photocatalysis, and hydrogen generation) and storage (e.g., batteries), electronics, optics, optoelectronics, magnetic materials and devices, nanotechnology, and biotechnology. The current research projects are:

Current research projects:

A General and Robust Strategy for Monodisperse Functional Nanocrystals (i.e., Plain, Core/Shell, Hollow and Janus Nanocrystals)

 Materials for Solar Energy Conversion

 Materials for Energy Storage (Li-ion Batteries)

 Materials for Hydrogen Generation and Photocatalysis

 Materials for Thermoelectrics

 Self-Assembly of Polymers and Nanocrystals

 Functional Nanocomposites

 Synthesis, Characterization and Self-Assembly of Nonlinear Functional Homopolymers and Block Copolymers via a Combination of Living Polymerizations (e.g., ATRP and RAFT) and Click Reaction

 Functional Nanomaterials

For more information, click on Nanostructured Functional Materials (NanoFM) research group website (http://nanofm.mse.gatech.edu/).


Research Challenges:
B.S., Materials Chemistry, Xiamen University, Fujian, China, 1995
M.S., Macromolecular Science, Fudan University, Shanghai, China, 1998
Ph.D., Polymer Science & Engineering, University of Massachusetts, Amherst, MA, 2002
Research Keywords:
materials for energy conversion,materials for energy storage (Li+ battery),materials for thermoelectrics,materials for H2 generation and photocatalysis,self-assembly of polymers and nanocrystals,functional nanomaterials,monodisperse functional nanocrystals,functional nanocomposites,synthesis, characterization, and self-assembly of nonlinear block copolymers

Selected Publications

(* = Corresponding Author)


35. H. Xu, Y. Xu, X. Pang, Y. He, J. Jung, H. Xia, and Z. Lin*, "A general route to nanocrystal kebabs periodically assembled on stretched flexible polymer shish”, Science Advances, 1, e1500025 (2015) 

34. B. Jiang, X. Pang, B. Li, and Z. Lin*, "Organic-inorganic nanocomposites via placing monodisperse ferroelectric nanocrystals in direct and permanent connect with ferroelectric polymers", Journal of the American Chemical Society, 137, 11760 (2015).

33. J. Hu, A. Liu, H. Jin, D. Ma, D. Yin, P. Lin, Shun Wang, Z. Lin* and J. Wang, "A versatile strategy for shish-kebab-like multi-heterostructured chalcogenides and enhanced photocatalytic hydrogen evolution”, Journal of the American Chemical Society, 137, 11004 (2015).

32. D. Yang, X. Pang, Y. He, Y. Wang, G. Chen, W. Wang, and Z. Lin*, "Precisely size-tunable magnetic/plasmonic core/shell nanoparticles with controlled optical properties”, Angewandte Chemie International Edition, 54, 12091 (2015).

31. H. Xu, X. Pang, Y. He, M. He, J. Jung, H. Xia, and Z. Lin*, "An unconventional route to monodisperse and intimate semiconducting organic-inorganic nanocomposites”, Angewandte Chemie International Edition, 54, 4636 (2015).

30. B. Li, C. Zhang, B. Jiang, W. Han, and Z. Lin*, "Flow-enabled self-assembly of large-scale aligned nanowires”, Angewandte Chemie International Edition, 54, 4250 (2015).

29. Y. Yang, W. Zhan, R. Peng, C. He, X. Pang, D. Shi, T. Jiang, and Z. Lin*, "Graphene-enabled superior and tunable photomechanical actuation in liquid crystalline elastomer nanocomposites”, Advanced Materials, 27, 6376 (2015).

28. S. Wu, R. Xu, M. Lu, R. Ge, J. Iocozzia, C. Han, B. Jiang, and Z. Lin*, "Graphene-containing nanomaterials for lithium ion battery”, Advanced Energy Materials, 5, 1500400 (2015).

27. S. H. Kang, S. Hwang, Z. Lin*, S. H. Kwon, and S. W. Hong, "A robust highly aligned DAN nanowire array-enabled lithography for graphene nanoribbon transistors”, Nano Letters, 15, 7913 (2015).



26. X. Cao, Q. Zhao, Z. Lin*, and H. Xia, "The chemistry of aromatic osmacycles”, Accounts of Chemical Research. 47, 341 (2014).

25. X. Pang, C. Wan, M. Wang, and Z. Lin*, "Strictly biphasic soft and hard Janus structures: synthesis, properties and applications”, Angewandte Chemie International Edition, 53, 5524 (2014).

24. B. Li, W. Han, B. Jiang, and Z. Lin*, "Crafting threads of diblock copolymer micelles via flow-enabled self-assembly”, ACS Nano, 8, 2936 (2014).

23. M. Wang, J. Ioccozia, L. Sun, C. Lin, and Z. Lin*, "Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis”, Energy & Environmental Science , 7, 2182 (2014).



22. X. Pang, L. Zhao, W. Han, X. Xin, and Z. Lin*, "A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals”, Nature Nanotechnology, 8, 426 (2013).

21. W. Han, M. He, M. Byun, B. Li, and Z. Lin*, “Large-scale hierarchically structured conjugated polymer assemblies with enhanced electrical conductivity”, Angewandte Chemie International Edition, 52, 2564 (2013).

20. M. Byun, W. Han, B. Li, X. Xin, and Z. Lin*, "An unconventional route to hierarchically ordered block copolymer on gradient patterned surface enabled by controlled evaporative self-assembly”,Angewandte Chemie International Edition, 52, 1122(2013)

19. M. Ye, D. Zheng, M. Lv, C. Chen, C. Lin, and Z. Lin*, "Hierarchically structured nanotubes for highly efficient dye-sensitized solar cells”, Advanced Materials, 25, 3039 (2013).

18. W. Han, B. Li, and Z. Lin*, "Drying-mediated assembly of colloidal nanoparticles into large-scale microchannels”, ACS Nano , 7, 6079 (2013).

17. B. Li, W. Han, M. Byun, L. Zhu, Q. Zou, and Z. Lin*, "Macroscopic highly aligned DNA nanowires created by controlled evaporative self-assembly”, ACS Nano, 7, 4326 (2013).

16. M. Wang, L. Sun, Z. Lin*, J. Cai, K. Xie, and C. Lin, "p-n heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities”, Energy & Environmental Science, 6, 1211 (2013).

15. M. He, F. Qiu, and Z. Lin*, "Towards high-performance polymer-based thermoelectric materials”, Energy & Environmental Science, 6, 1352 (2103).



14. M. Ye, J. Gong, Y. Lai, C. Lin, and Z. Lin*,High efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots sensitized TiO2 nanotube arrays”, Journal of the American Chemical Society, 134, 15720 (2012).

13. W. Han, M. Byun, B. Li, X. Pang, and Z. Lin*,A simple route to hierarchically assembled micelles and inorganic nanoparticles”, Angewandte Chemie International Edition, 51, 12588 (2012).

12. W. Han and Z. Lin*, "Learning from "coffee rings": ordered structures enabled by controlled evaporative self-assembly", Angewandte Chemie International Edition, 51, 1534 (2012). 

11. L. Zhao and Z. Lin*, “Crafting semiconductor organic-inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells”, Advanced Materials, 24, 4353 (2012). 

10. Y. Jang, X. Xin, M. Byun, Y. Jiang, Z. Lin* and D. Kim, "An unconventional route to high-efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticle photoanode", Nano Letters, 12, 479 (2012).

9. M. He, J. Ge, Z. Lin, X. Wang, H. Lu, Y. Yang, and F. Qiu, “Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at organic/inorganic semiconductor interface”, Energy & Environmental Science, 5, 8351 (2012)



8. X. Xin, M. He, W. Han, and Z. Lin*, "Low-cost CZTS counter electrodes for high-efficiency dye sensitized solar cells”, Angewandte Chemie International Edition, 50, 11739 (2011). 

7. L. Zhao, X. Pang, R. Adhikary, J. Petrich, and Z. Lin*, "Semiconductor anisotropic nanocomposites via directly coupling conjugated polymers with quantum rods”, Angewandte Chemie International Edition, 50, 3958 (2011).

6. L. Zhao, X. Pang, R. Adhikary, J. Petrich, M. Jeffries-EL, and Z. Lin*, "Organic-inorganic nanocomposites by placing conjugated polymers in intimate contact with quantum rods”, Advanced Materials, 23, 2844 (2011). 

5. M. Ye, X. Xin, C. Lin, and Z. Lin*, "High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes”, Nano Letters, 11, 3214 (2011).

4. M. He, W. Han, J. Ge,Y. L. Yang, F. Qiu, and Z. Lin*, "High efficiency all-conjugated poly(3-alkylthiophene) diblock copolymer-based bulk heterojunction solar cells with controlled molecular organization and nanoscale morphology", Energy & Environmental Science, 4, 2894 (2011).



3. M. Byun, N. B. Bowden, and Z. Lin*, "Hierarchically organized structures engineered from controlled evaporative self-assembly", Nano Letters, 10, 3111 (2010).

2. M. He, L. Zhao, J. Wang, W. Han, Y. L. Yang, F. Qiu, and Z. Lin*, "Self-assembly of all-conjugated poly(3-alkylthiophene) diblock copolymer nanostructures from mixed selective solvents", ACS Nano, 4, 3241, (2010).

1. M. Goodman, L. Zhao, and Z. Lin*, "Self-assembly of CdTe tetrapods into network monolayers at air/water interface", ACS Nano, 4, 2043 (2010).